Mixing Time for a Random Walk on Rooted Trees
نویسنده
چکیده
We define an analog of Plancherel measure for the set of rooted unlabeled trees on n vertices, and a Markov chain which has this measure as its stationary distribution. Using the combinatorics of commutation relations, we show that order n2 steps are necessary and suffice for convergence to the stationary distribution.
منابع مشابه
A Sharp Analysis of the Mixing Time for Random Walk on Rooted Trees
We define an analog of Plancherel measure for the set of rooted unlabeled trees on n vertices, and a Markov chain which has this measure as its stationary distribution. Using the combinatorics of commutation relations, we show that order n steps are necessary and suffice for convergence to the stationary distribution.
متن کاملGetting Lost Efficiently
We consider the mixing time of random walks on a graph G, using the eigenvalue gap to measure the mixing time. We attempt to bound the mixing time in terms of the diameter Diam of G. We show that, for the standard random walk, there exists a family of graphs with diameter 3 but mixing time Ω(n), and a family of trees with diameter 3 but mixing time Ω(n). The main result is a scheme for re-weigh...
متن کاملRandom Walks on Rooted Trees
For arbitrary positive integers h and m, we consider the family of all rooted trees of height h having exactly m vertices at distance h from the root. We refer to such trees as (h,m)-trees. For a tree T from this family, we consider a simple random walk on T which starts at the root and terminates when it visits one of the m vertices at distance h from the root. Consider the problem of finding ...
متن کاملRandom environment on coloured trees
In this paper we study a regular rooted coloured tree with random labels assigned to its edges, where the distribution of the label assigned to an edge depends on the colours of its endpoints. We obtain some new results relevant to this model and also show how our model generalizes many other probabilistic models, including random walk in random environment on trees, recursive distributional eq...
متن کاملCycle Density in Infinite Ramanujan Graphs
We introduce a technique using non-backtracking random walk for estimating the spectral radius of simple random walk. This technique relates the density of non-trivial cycles in simple random walk to that in non-backtracking random walk. We apply this to infinite Ramanujan graphs, which are regular graphs whose spectral radius equals that of the tree of the same degree. Kesten showed that the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009